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How I Wrote My Prospectus 
My prospectus started in the fall of my second year from a list of half-formed ideas and several 
stressful meetings with my advisor – whom I feared would find that list the silliest, least thought-
provoking, impractical thing he’d ever read. While those fears were, on the whole, unfounded, 
spending a few hours talking over where my areas of interest overlapped with notable gaps in the 
literature and the skillset of the lab was crucial for laying out the plan moving forward. Together, we 
worked out which area I would likely have the most time to flesh out some preliminary results for by 
the spring semester, which ideas overlapped well with upcoming grants, and what parts of the 
research I was most interested in completing. I then spent a month or so on my own writing out a 
short version of the prospectus, which I passed back and forth with my advisor for edits before the 
pre-prospectus meeting with my full committee in February. That meeting provided some valuable 
insights on what needed to be expanded or changed from the original document, plus a sizable 
reading list of key literature that might be relevant to include moving forward. The next few months 
were spent generating initial results, going over the reading list to incorporate those ideas into my 
thinking and into the document, and fleshing out my research plan before sending the committee 
the final document in May.  

Advice for Prospectus Writers 
1. Collaborate with your advisor on ideas. They know the literature and the skillset of the lab 

much better than you, and have most likely been on enough committees to offer good 
advice about which of your project ideas work best together and for the prospectus.  

2. Seek feedback from the other students in the department. Passing written prospectuses 
between members of my cohort was a great sanity check for all of us. Presenting my 
prospectus slides in speakeasy was so helpful for building confidence, and several people 
whose advisors were on my committee were able to give me very detailed and practical 
advice about their expectations.  

3. Don’t panic about not having too much preliminary research. Our department is not set up 
to require that; given my teaching schedule and how new my ideas were when I started 
writing, most of the preliminary data I did have was more a proof of concept than anything 
concrete. This was not an issue for the committee, all of whom were much more focused on 
making sure ideas had a firm basis and projects asked interesting questions.  

4. Meet with your other committee members individually beforehand if you can. I did not do 
this, and it would have been extremely helpful for me to understand what they were looking 
for from my final prospectus and to know what they wanted me to get out of the readings 
they assigned me.  

5. Try to keep some perspective about what this is. The goal of the prospectus is to help you 
come up with a good plan, get some expert feedback on it, and demonstrate some key 
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knowledge in the field. All of those things will help you moving forward, even if your 
dissertation plan ends up evolving a lot from what you end up presenting pre-candidacy – 
mine has changed a ton, but I still refer back to the document and my notes from the 
committee meeting frequently for citations and ideas! 
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SUMMARY: As ecosystems around the world face increasingly warm and variable climates, 

predictions about the impacts of changing temperatures on the biota experiencing them remain 

uncertain. My dissertation aims to improve these forecasting efforts by combining mechanistic 

ecological modeling with established biological metrics. In Chapter 1, I incorporate the different 

physiological causes of death into mechanistic thermal performance curves and dynamic 

population models to extend our predictive capacity into the range of stressful temperatures. 

Chapter 2 then explores the population-level costs of different thermal acclimations and 

adaptations to determine optimal strategies and their feasibility in changing thermal landscapes. 

In the remaining chapters, I consider the added complications of deviations from predicted 

thermal performance due to confounding ecological factors (Chapter 3) and spatiotemporal 

variation (Chapter 4). By informing comparisons with established models, predictions about 

thermal risks, and hypotheses about the eco-evolutionary theory of thermal performance curves, 

these modeling efforts will contribute crucial advancements to translating our rapidly growing 

empirical understanding of thermal performance into the theory required to meet the urgent 

conservation needs of today’s changing climate.  
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INTRODUCTION & BACKGROUND 

Forecasting the impacts of climate change on organisms around the world is a critical goal of 

current ecology. However, many of our best predictive models rely on faulty extrapolations and 

simplifications about the impacts of temperature—particularly its hottest extremes—on 

individuals, populations, and communities (e.g., Deutsch et al., 2008; Pinsky et al., 2019; 

Vasseur et al., 2014; Woods et al., 2018). Heat waves, one of the most prominent drivers of acute 

extinction events (Grant et al., 2017; Harley and Paine, 2009; Jørgensen et al., 2022; McKechnie 

and Wolf, 2010; Parmesan et al., 2000; Pörtner et al., 2022) (e.g., Harvell et al., 2019; Rasmont 

and Iserbyt, 2012; Thomsen et al., 2019; Welbergen et al., 2008), are projected to globally 

increase in intensity, frequency, and duration over the next century (Ganguly et al., 2009; Meehl 

and Tebaldi, 2004; Pörtner et al., 2022; Rahmstorf and Coumou, 2011). Given the 

disproportionate impact these hot temperatures will have on population fitness and subsequent 

extinction and extirpation risks, better incorporation of their consequences into our forecasting 

models is imperative. 

 

The aim of this project is to improve our ability to incorporate those consequences into 

predictions made with thermal performance curves. Thermal performance curves, or TPCs, show 

the relationship between temperature and performance (Angilletta, 2009; Huey and Stevenson, 

1979). Generally, TPCs are measured exclusively in ectotherms and are unimodal and left-

skewed, with x-intercepts at the critical thermal minimum and maximum (CTmin and CTmax, 

respectively) enclosing the organism’s thermal breadth (Tbreadth) and a peak at the thermal 

optimum (Topt) (Angilletta, 2009) (Fig 1). The independent variable of a TPC is either an 

organism’s external experienced temperature or internal body temperature; these temperatures 

are often assumed equal in ectotherms, but in practice are decoupled by temperature variation 

and thermoregulation (e.g., Huey et al., 2012; Kearney et al., 2009; Sears et al., 2016). The 

dependent variable of a TPC is either: 

a) performance: a metric of organism functionality which changes, usually rapidly and 

reversibly, with respect to temperature, such as sprint speed. Most performance metrics 

are feasible to collect experimentally, bounded from below by zero, and of great interest 

in evolutionary biology (Angilletta, 2009). 

b) or fitness: a metric of population success which changes with respect to temperature, 

defined in this context as Malthusian fitness, or the intrinsic population growth rate (r) 

equivalent to the instantaneous birth rate (b) minus the instantaneous death rate (d), 

absent of density dependent factors (Amarasekare and Savage, 2012; this contrasts with 

defining fitness as lifetime reproductive output, which is less appropriate in the models 

used herein). Fitness metrics are typically difficult to collect experimentally, not bounded 

below by zero, and of great interest in population ecology. 

These metrics of performance and fitness are sometimes naively equated, but that conversion is 

usually nontrivial due to disparate assumptions and bounds, as well as the uncorrelated, non-

linear thermal dependences of birth and death rates (Angilletta, 2009; Irschick and Higham, 

2016; Sinclair et al., 2016). 

 

In the context of forecasting, it is critical to understand the theoretical connection between 

experimentally measured TPCs and their broader ecological relevance: how do we arrive at the 

relationship between temperature and fitness, and what should we understand that relationship to 

mean? Direct connections between performance metrics and fitness can be tenuous, but their 
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association has a strong theoretical backbone. The ubiquitous unimodal left-skew of TPCs arises 

not only from curve-fitting experimental datapoints, but also from summing realistic birth and 

death curves (Amarasekare, 2015; Amarasekare and Savage, 2012; Vinton and Vasseur, 2022). 

The characteristic temperature dependence of birth across many taxa is symmetric and unimodal 

(e.g., Carrière and Boivin, 1997; Dannon et al., 2010; Dreyer and Baumgärtner, 1996; Hou and 

Weng, 2010; Morgan et al., 2001), while the characteristic temperature dependence of death 

tends to exponentially increase according to a Boltzmann-Arrhenius relationship (e.g., Gillooly 

et al., 2002; Savage et al., 2004). By the definition of Malthusian fitness r, subtracting the 

characteristic death rate from the characteristic birth rate thus yields a TPC of fitness that 

increases gradually towards a peak near the optimum of birth, then drops off quickly into 

negative values as death rates accelerate, with slopes and curve skew determined by species-

specific scaling rates (Fig 1). 

 

The parallel between performance- and fitness-derived TPCs, as well as the intuitive practical 

connection between the two, suggests a clear relationship between the preexisting experimental 

data on biological performance and the ecological fitness metrics required to forecast extinction 

risks. Currently, making such predictions with temperature-dependent performance data relies on 

integrating an organism’s TPC with climate data to compare its average observed fitness under 

past temperatures with its average projected fitness under future temperatures (e.g., Deutsch et 

al., 2008; Vasseur et al., 2014). However, in order to use the experimental data we have to make 

the predictions we need, several key theoretical gaps in this framework must be addressed. 

Resolving those gaps through improved modeling efforts is the first step towards increasing the 

accuracy and confidence of population forecasting in a warming world. 

 

 

Chapter 1: Extending mechanistic TPCs to stressful temperatures 

A fundamental issue with using TPCs predictively is their inaccuracy with respect to extremely 

hot temperatures. Most published models rely on extrapolating organismal TPCs measured 

exclusively under permissive temperatures—those temperatures under which organisms can 

successfully grow and reproduce—into the range of those hotter, stressful temperatures. Because 

physiological insights show that death rates accelerate rapidly under heat wave conditions (Baker 

and Geider, 2021; Hollingsworth, 1969; Stroustrup et al., 2016; Jørgenson et al. 2022), this naive 

extrapolation is likely resulting in erroneously optimistic assessments of impending extinction 

risks. However, gathering sufficient data under these extremes is prohibitively difficult. 

Avoiding this inaccuracy thus requires a better theoretical understanding of the mechanisms 

underlying death rates as temperatures increase. 

 

The aim of this chapter is to mechanistically determine what TPCs should look like at stressful 

temperatures. Increasing thermal means and variation around the globe are leading to higher 

likelihoods that organisms will experience longer, more frequent exposures to heat wave 

conditions. Because current predictions use TPCs that do not include dynamic modeling or the 

acceleration of death rates under heat stress, they miss the quick and devastating impacts of the 

extreme temperature events that will shape extinction and extirpation risks over the next century. 
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1.1 Motivation and Background 

Typically, the TPCs used to determine population fitness r in classic projection papers like 

Deutsch et al. (2008) are derived by fitting a ‘TPC-shaped’ function to several values of r; these 

in turn are calculated from empirical measurements of vital rates at a few temperatures. The 

standard definition of Malthusian fitness offers a more mechanistic method for deriving this 

relationship from life history parameters; as shown in Amarasekare & Savage’s landmark 2012 

derivation, the characteristic TPC shape also arises from the difference between a normal 

distribution of birth rates and an Arrhenius distribution of death rates with respect to 

temperature. While this framework offers limited support to the phenomenological Deutsch 

method, common approaches still incorporate several issues that I would like to highlight. 

 

a) Fitting to Limited Empirical Data: TPC curves are typically fit to empirical studies that 

only provide 4-8 datapoints, with only 1-2 of those measured at temperatures higher than Topt 

(see any of the 38 datasets used in Deutsch et al., 2008). Notably, the prominent method of curve 

fitting TPCs to this data introduced by Deutsch et al. (and subsequently used by Vasseur et al., 

2014 and Duffy et al., 2022, among others; see Table 2) includes a breakpoint, such that 

increasing performance up to Topt is described by fitting a Gaussian function to data gathered at T 

≤ Topt, while decreasing performance past Topt is described by fitting a quadratic function to data 

gathered at T > Topt. In practice, this method means that the predominant description of death 

rates at stressful temperatures arises from the extrapolation of a curve fit to only two datapoints. 

These fitting functions may be surprisingly close to correct, but as there is no mechanistic theory 

underlying them, their accuracy is not rigorous, repeatable, or well understood. 

 

b) Accelerating Death Rates: Once a TPC intersects the x-axis on the right (r = 0, T > 

Topt), its value is either (1) assumed equal to 0 (e.g., Deutsch et al., 2008), despite knowledge that 

r < 0 simply indicates the very biologically plausible scenario of a shrinking population (see 

Vasseur, 2020), or (2) extrapolated from the existing fitness curve (e.g., Vasseur et al., 2014), 

despite empirical evidence that death rates are controlled by different mechanisms at stressful 

temperatures (Somero et al., 2017) and, consequently, sharply accelerate (Baker and Geider, 

2021; Hollingsworth, 1969; Jørgensen et al., 2022; Stroustrup et al., 2016). 

 

c) Limits of Metabolic Theory: The theory underlying the shape of mechanistic TPCs (r 

= b – d) relies on a death rate controlled by respiratory costs, as explained by metabolic theory. 

However, metabolic theory itself relies on the assumption that proteins are functioning as they 

should (Brown et al., 2004; Savage et al., 2004); stressful temperatures, by disrupting protein 

function, break this assumption and incur a different mechanism for death which we should not 

expect to be able to model with the same equation (Knapp and Huang, 2022; Ratkowsky et al., 

2005; Santra et al., 2019; Somero et al., 2017). 

 

The crux of these three points is that death rates at permissive temperatures do not explain death 

rates at stressful temperatures – and we should not expect them to. The physiological evidence 

clearly shows that while proteins work, the leading cause of degradation and death is the slow 

ramping up of metabolic costs, giving us the well-known death function underlying classic 

TPCs; however, when proteins degrade, that metabolic mechanism is immediately overtaken by 

the disastrous impacts of a crumbling proteome.  
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If we wish to use TPCs predictively at the stressful temperatures where they have not been (and 

frequently cannot be) measured, we must understand the underlying mechanisms. By using birth 

and death rates to calculate fitness instead of estimating it phenomenologically, I will avoid issue 

(a) by fitting the death function to all available datapoints instead of extrapolating fitness at 

stressful temperatures from only a couple of them; (b) by relying on a mechanistic explanation of 

underlying reaction rates instead of an assumed relationship with temperature; and (c) by 

incorporating appropriate, nuanced assumptions about the different sources of death and their 

relationships with temperature. 

 

1.2 Proposed Methods 

Let the temperature-dependent fitness function r(T) = b(T) – d(T).  

 

Temperature-Dependence of Birth Rates: Let b(T), the birth rate with respect to temperature, be 

unimodal and fit to data compiled on the organism in question (e.g., parabolic distribution for 

phytoplankton in Baker and Geider, 2021; Weibull distribution for pea aphids in Xia et al., 

1999). This general relationship is well established in the literature (Dannon et al., 2010; Dreyer 

and Baumgärtner, 1996; Medeiros et al., 2003, 2000; Morgan et al., 2001; e.g., Reznick, 1985; 

Southwood, 1988) and arises theoretically (a) in a biomass framework through the symmetric 

relationship of ingestion rate around an optimal temperature (Englund et al., 2011; Uiterwaal and 

DeLong, 2020; Vinton and Vasseur, 2022) and (b) in a strict birth-death framework from the 

temperature limitations on the composite processes involved in one cohort of adults producing 

another (Amarasekare and Savage, 2012).  

 

Temperature-Dependence of Death Rates: Let d(T), the death rate with respect to temperature, be 

a Boltzmann-Arrhenius function of the form 𝑑(𝑇) = 𝑘0 𝐸𝑥𝑝[
𝐸𝐴

𝑘𝑇
], where 𝑘0 is the intercept value, 

𝐸𝐴 is the activation energy, and 𝑘 is the Boltzmann constant (~8.61×10-5 eV/K). This follows the 

established practice of assuming an Arrhenius relationship between death rate and temperature 

due to gradually increasing metabolic costs (Amarasekare and Savage, 2012; Cossins and 

Bowler, 1987; Jørgensen et al., 2022). In general, the Boltzmann-Arrhenius function indicates 

the effect of temperature on the rate of a reaction by mapping the increasing proportion of 

molecules with the sufficient kinetic energy (EA) for that reaction to occur (Brown et al., 2004). 

 

Classical empirical estimates of activation energies for most biological rates, including death rate 

under permissive temperatures, consistently fall within 0.6-0.7eV – the very same narrow, 

observed range of activation energies of the biochemical reactions underlying metabolism 

(Brown et al., 2004; Gillooly et al., 2002). A recent meta-analysis found a slightly wider range of 

0.5-0.8eV across 1,351 vital rates in 314 ectothermic species (Jørgensen et al., 2022). These 

consistent findings correspond to the low temperature sensitivity of death rates under permissive 

temperatures, and these temperature-insensitive death rates are the ones that are utilized in the 

classic fitness TPC framework. 

 

Currently, these same temperature-insensitive death rates are being extrapolated into stressful 

temperatures. However, death rates are extremely temperature sensitive in the stressful range 

(Baker and Geider, 2021; Hollingsworth, 1969; Jørgensen et al., 2022; Stroustrup et al., 2016). 

Consequently, instead of modeling the death rate as a single Arrhenius function, we now shift to 

modeling the death rate as the sum of two Arrhenius functions. The first, dm(T), describes death 
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due to metabolic costs and dominates death rates under permissive temperatures. The second, 

dp(T), describes death due to declining protein function and dominates death rates under stressful 

temperatures. Since the processes controlling metabolic cost and declining proteostasis are 

different, we parameterize dp(T) differently than dm(T), and we now write the temperature 

dependence of death as 𝑑(𝑇) = 𝑑𝑚 + 𝑑𝑝 = 𝑘0𝑚  𝐸𝑥𝑝 [
𝐸𝐴𝑚

𝑘 𝑇
] + 𝑘0𝑝 𝐸𝑥𝑝 [

𝐸𝐴𝑝

𝑘 𝑇
]. With this unified 

model of death, we now have a set of mechanistic assumptions for the birth and death processes 

under both permissive and stressful temperatures. 

 

For dm, the activation energy EAm should fall within the 0.5-0.8eV range detailed above. For dp, 

however, the activation energy EAp should be much greater, reflecting the extreme temperature 

sensitivity of death in the stressful range. Jørgensen et al. (2022) gathered data on the heat failure 

rates of 112 species in this range and found a median activation energy of 6.12eV. To 

demonstrate the magnitude of this discrepancy, they explain that for each single degree of 

warming, the median increase in vital rates under permissive temperatures (EA = 0.5eV) is 7%; 

under stressful temperatures (EA = 6.12eV), it is 110%. 

 

Data availability: While strict birth and death or growth and decline data are unfortunately 

difficult to find in the literature or to collect empirically, these values have been reported in a few 

notable cases (e.g., Baker and Geider, 2021) and can be extracted from some reported life tables 

(e.g., Liu and Tsai, 2000) utilizing the methodology of Birch (1948) (see Fig 2 for examples).  

 

Generating model results: With the framework of the mechanistic TPCs in place and appropriate 

datasets located, what remains unclear is the value at which declining proteostasis overwhelms 

increasing metabolic costs as the leading cause of death. Call the temperature at which this 

occurs the breakpoint Tbreak. Brown et al. (2004) proposed that death rates should be explained 

fully by metabolic costs anywhere within the “normal activity temperatures” of 0 and 40oC; this 

assumption is, in essence, the null model that former work has relied upon. Because it assumes 

Tbreak is hot enough that most organisms are unlikely to ever experience temperatures above it, 

declining proteostasis would never be an important cause of death and preexisting TPCs should 

already describe death rates well. This null model, however, clearly does not fit with the 

empirical evidence of a breakpoint in death rates or the experimental work on protein 

denaturation temperatures, and we are thus free to reject it from the start. 

 

Savage et al. (2004) described ‘biologically relevant’ temperatures more conservatively as only 

those lower than Topt, the peak of the fitness curve. Jørgensen et al. (2022) describe a critical 

temperature separating the permissive and stressful ranges roughly equal to CTmax, the 

temperature “at which biological processes dictating the ‘rate of death’ become dominant over 

those determining the ‘rate of life.’” More research is needed to carefully assess these 

possibilities by asking when the assumption of normal protein function is actually broken. The 

closer Tbreak is to Topt, the riskier stressful temperatures become; consequently, the lower the Tbreak 

value, the smaller the thermal safety margin of the organism. We start with three possible 

biologically relevant values of Tbreak, listed in order of decreasing severity: Topt, CTmax, and b = 0. 

 

Within a modeling framework, the first question to answer is the impact of Tbreak’s relative 

location. To assess the impacts of Tbreak as a free parameter on temperature-dependent fitness, we 

turn to dynamical population modeling. The mechanistic r(T) is plugged into a logistic growth 
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framework and paired with a simulated temperature regime to compute the differential 

‘riskiness’ of various Tbreak values. This population dynamical approach is an important missing 

component of current models because it captures the impact of sequential population sizes on 

each other; they thus are able to capture the rapid, severe impacts of sequential and transient 

temperature extremes, which previous approaches based on non-linear averaging (e.g., Deutsch 

et al., 2008; Vasseur et al., 2014) explicitly cannot quantify. Only one study has thus far broadly 

integrated temperature-dependent population dynamics into extinction risk estimates (see Duffy 

et al., 2022, Methods: Population dynamical modeling), but further incorporation of dynamical 

approaches is critical to assessing extinction risks in variable thermal environments.  

 

The first, simplest version of this method (1) incorporates r(T) into the r-α population growth 

model, a logistic growth model which replaces the carrying capacity K with the density-

dependence parameter α (where K = r/α) and (2) generates sequential temperatures T using a 

Stochastic Differential Equation framework (in this case, an Ornstein-Uhlenbeck process (see 

Mangel, 2006)) modeled using the Stratonovich Process function in Wolfram Mathematica 

V12.0.0.0, then (3) calculates sequential population sizes using the r-α model at each 

temperature to examine the population dynamics over time. This simulation is then (4) assigned 

an arbitrary extinction threshold, (5) repeatedly run for a set amount of time, and (6) made to 

output the proportion of simulations in which the population ‘goes extinct’ by crossing the 

assigned extinction threshold. This output is then (7) calculated for a range of Tbreak values to (8) 

generate a relationship between ultimate extinction risk and the breakpoint temperature. 

 

Possible extensions of this model may include (1) using the classic logistic growth model instead 

of the r-α model, which may be useful if the carrying capacity K and its relationship to r can be 

better constrained, (2) using more realistic, data-based, or autocorrelated temperature regimes, 

though this will be more useful for specific predictions about particular species in set locations 

than for generating the broad relationships sought here, and (3) incorporating a more informed 

extinction threshold, such as one generated through a relationship between the carrying capacity 

K and the threshold under which Allee effects are relevant. Each of these avenues may have 

utility depending on the specific questions we end up asking. 

 

1.3 Model Predictions & Outlook 

From the preliminary TPCs examined so far, fitness curves calculated by the Deutsch method 

tend to be more left-skewed than those calculated with the birth-death framework, with 

variability in which curve crosses the x-intercept first but generally steeper fitness curves beyond 

r = 0 from the latter. Inclusion of the population dynamical framework consistently increases the 

overall variability of population size and risk of extinction above non-linear averaging 

approaches. The combination of this dynamic framework with realistic death rates suggests that 

simulations run with higher thermal variability are thus extremely likely to find higher extinction 

risks (as predicted by Slein et al., 2023; Vasseur et al., 2014), with lower Tbreak values 

corresponding to smaller safety margins. 

 

Despite the number of assumptions incorporated into this preliminary modeling scheme, it will 

be able to clearly show the consequences of the existence and location of a breakpoint in death 

rates. However, these results ultimately do not meet the hope for a mechanistic, temperature-

dependent model of population fitness because the value of Tbreak will be determined only by 
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available empirical evidence – its location and movement have not been tied to any underlying 

processes. Even if higher Tbreak values show sharply diminishing returns in extinction reductions, 

there would be no point in any organism evolving low Tbreak values; this could only serve to 

increase potential death rates, and, so far, we have not considered any costs of doing such a 

thing. This will be the subject of Chapter 2. 

 

Goal Outcomes: Mathematical model and accompanying paper assessing the importance of and 

available data for mechanistic fitness TPCs, particularly in relation to the breakpoint in death 

rates and shape of curves beyond that point 

 

 
Chapter 2: What thermal regimes are organisms optimally adapted for? 

With a mechanistic explanation of temperature-dependent death rates in hand, the next question 

is why Tbreak is where it is. Presumably, organisms ought to push the breakpoint to as high a 

temperature as possible to avoid any risks of slipping into the regime of stressful temperatures 

and their aggressively accelerating death rates. However, moving Tbreak to hotter temperatures 

does not come without cost; it requires keeping one’s internal proteome intact for as long as 

possible by adapting more stable protein states or rapidly producing new, defensive proteins to 

mitigate the damage stressful temperatures cause. Both mechanisms can be extremely 

energetically costly and, as such, it only makes sense for organisms to adapt as much as they 

need to: each species should seek the optimal balance between the energetic cost of having high 

Tbreak values and the risk of actually needing them. Given a certain temperature regime, there will 

thus be some optimal breakpoint value that maximizes population success and minimizes 

extinction risks. That optimization – and where, given past, current, and projected temperature 

regimes, it falls in relation to observed breakpoints – is the subject of this chapter. 

 

2.1 Motivation & Background 

The primary risk posed to organisms by heat stress is the denaturation of proteins – the loss of 

their native, functional structure – which can, in turn, lead to cytotoxic protein aggregations 

(Stefani and Dobson, 2003) and a cascade of cellular damage (Santra et al., 2019). There are two 

ways to avoid this damage: adaptation or mitigation. 

 

Adaptation is the long-term strategy employed under consistent levels of thermal stress. As such, 

the intrinsic thermal stability of proteins is not equal across organisms; there is an inherent 

structural trade-off between cold-adapted organisms, whose more flexible proteins tend can 

function more quickly, and warm-adapted organisms, whose more rigid proteins are less 

susceptible to thermal denaturation (Gu and Hilser, 2009). This trade-off maintains the consistent 

amount of fluidity required for protein functionality across organisms that have evolved at 

different temperatures (Somero et al., 2017). The temperature-dependent denaturation of proteins 

thus depends on the adaptations of the organism in question.   

 

Mitigation is the short-term strategy employed during acute events of thermal stress. Through 

adaptation, organisms evolve proteins that are well-adapted for the permissive temperature 

environments they have evolved in. Mitigation tactics, collectively known as the Heat-Shock 

Response (HSR), are the fail-safe for any forays out of the adaptive, permissive regime and into 

the stressful one. This HSR mediates the decline in protein function that dominates death rates 
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under stressful temperatures in most taxa (Feder and Hofmann, 1999; Richter et al., 2010). 

However, its efficacy depends on the duration, intensity, and abruptness of the experienced 

thermal stress (Boopathy et al., 2022). 

 

On the cellular level, heat stress induces the HSR by causing the dissociation of a transcription 

factor (HSF1) from a multichaperone protein complex. The freed chaperone proteins from that 

complex (collectively known as Heat Shock Proteins, or HSPs) bind to denatured proteins to 

initiate refolding or degradation, while HSF1 moves to the nucleus to transcribe more HSPs. 

Once no denatured proteins remain, HSPs instead re-bind to HSF1, reforming the 

multichaperone complex and turning the HSR ‘off’ (Somero et al., 2017; Sørensen et al., 2003). 

The induction temperature of the HSR again depends on the acclimation history of the organism 

and alters the inflection point of death rates under heat stress (Vasseur et al., unpublished). 

 

A key component to consider about the HSR is its energetic expense. Handling heat-induced 

damage incurs high ATP costs, as demonstrated by the synchronized uptick in metabolic 

response genes with molecular chaperone genes in response to acute heat stress in intertidal 

invertebrates (Connor and Gracey, 2011; Gracey et al., 2008; Han et al., 2013; Somero et al., 

2017) and Drosophila (Feder et al., 1996; Krebs and Loeschcke, 1994; Welte et al., 1993). These 

metabolic costs and the consequent metabolic depression (see Hoekstra and Montooth, 2013) are 

known to result in reductions to growth rate (DiDomenico et al., 1982; Feder et al., 1992; 

Gomez-Pastor et al., 2018; Krebs and Loeschcke, 1994; López-Maury et al., 2008), fecundity 

(Krebs and Loeschcke, 1994; Silbermann and Tatar, 2000), and lifespan (Krebs and Feder, 1998, 

1997) proportional to the frequency and severity of heat stress. Consequently, it is impossible to 

accurately incorporate the population-level effects of experiencing heat stress without explicitly 

considering temporal dynamics within a mechanistic model inclusive of both metabolic costs and 

proteostasis loss. Our model is thus uniquely suited to the task. 

 

2.2 Proposed Methods 

In the model described in Chapter 1, Tbreak was a free parameter whose location relied on 

hypothesized mechanisms. In this framework, we instead incorporate those mechanisms 

organisms use to shift Tbreak (adaptation and mitigation), as well as the energetic costs of doing 

so. This method requires determining both what the metabolic cost is and what that cost is to. 

There is consensus in the literature that the metabolic cost of the HSR is high; the single 

empirical study measuring that cost found an increase of 35% and noted a positive correlation 

with the gene copy number of heat shock protein Hsp70 in Drosophila melanogaster (Hoekstra 

and Montooth, 2013). As a first approach, we can use these correlations (ideally in the same 

genus or species, for which there is significant thermal performance data) to estimate the cost of 

HSR activation, alongside the preliminary unified death rate model of Vasseur et al. 

(unpublished) to calculate the quantity of HSP production given different heat shocks. Because 

our model incorporates three mechanistic vital rates (birth, death due to metabolic costs, and 

death due to proteostasis loss), we can then compare the favorability of initiating the HSR at 

different temperatures by running simulations where the HSR ameliorates proteostasis loss while 

incurring short- and long-term metabolic costs. We can then use this trade-off to determine the 

optimal HSR initiation temperature under different thermal regimes. Next steps include carefully 

determining if and how (1) this approach can be applied to other organisms and (2) to 

incorporate the costs separately into fecundity or growth rate. 
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Once we have established a model that determines the optimum temperature for HSR initiation 

(and, consequently, the optimum Tbreak value), there are two interesting applications to explore. 

The first is incorporating adaptation as well as mitigation; the initial model only includes the 

ability to respond to stressful temperatures in the short-term, but trends of increasing temperature 

may also induce adaption of more stable proteomes and, consequently, warmer-adapted 

organisms in the long-term. Functionally, this likely means increasing CTmax of the actual 

thermal performance curve by shifting the birth curve b(T) to the right in conjuncture with some 

metabolic cost of adaptation, but I have yet to work out the underlying mechanisms for this piece 

of the model. 

 

The second application approaches the question of optimal adaptation for the actual thermal 

environment. Given thermal regimes simulated to look like the past, current, and projected 

temperature regimes of a specific organism in a specific location (examples of potential methods 

for doing so may be found in Deutsch et al., 2008, Methods: Climate Data; Duffy et al., 2022, 

Methods: CMIP6 simulations & Statistical analyses of climate data; Jørgensen et al., 2022, Fig 

3a and Extended Data Fig 1; Vasseur et al., 2014, (b) Empirical data and climate change 

scenarios), we should be able to determine the optimal thermal strategies for each. The extent of 

the mismatch between actual observed adaptations and the optimal simulated adaptations for the 

different regimes will offer a glimpse into how fast the organism is adapted to changing 

temperatures (comparison between past and present), how well-adapted they are to current 

temperatures (comparison between empirical and optimal), and how quickly they need to adapt 

to survive under future temperatures (comparison between present and future, with respect to 

adaptation speed). 

 

Goal Outcomes: Mathematical model and accompanying paper assessing the optimal Tbreak 

value given the costs of HSR; comparisons between actual value and past/future temperature 

projections to assess riskiness and adaptation speed 

 

 
Chapter 3: TPCs are not static 

In the first two chapters of this project, the goal was the creation and implementation of a 

mechanistic TPC of population fitness to use for forecasting extinction and extirpation risks. The 

mechanistic nature of that model eliminated some of the least verified assumptions underlying 

predictive TPCs. While many assumptions necessarily remain, building a mechanistic framework 

for fitness TPCs offers a new avenue to deal with others. Most notably, TPCs are typically 

assumed to be both static over time and uniform across populations, both of which have been 

experimentally disproven (Sinclair et al., 2016). Important differences between measured TPCs 

in the lab and realized TPCs in the field may arise from acclimation, thermoregulation, life 

history, interacting stressors, thermodynamics, and ecological interactions (Dell et al., 2014; Fey 

et al., 2015; Fey and Vasseur, 2016; Kearney et al., 2013; Muñoz and Bodensteiner, 2019; 

Sinclair et al., 2016; Vinton and Vasseur, 2022). Addressing the discrepancies between the 

fundamental TPCs derived in these initial chapters and the realized TPCs that accurately describe 

dynamics in the field requires a clearer understanding of how these processes alter the underlying 

mechanisms. While I continue to gather sources hinting at which complicating factors can be 
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better addressed by this new framework, three potential avenues to explore dynamic TPCs are 

examined below. 

 

3.1 Motivation & Potential Methods 

Interacting stressors: Temperature is rarely, if ever, the only fluctuating factor in an organism’s 

environment. Varying levels of humidity, water, nutrients, salinity, or contaminants add new 

dimensions to the fitness reaction norms expected of a population. Our focus on temperature in 

this project stems from a particular interest in understanding the impacts of changing thermal 

regimes. While some empirical work has been done measuring two or three axes of this 

landscape of stress (e.g., Cross et al., 2015; Galindo et al., 2018; Lee and Roh, 2010; Loureiro et 

al., 2015; Thomas et al., 2017), empirically testing the thousands of combinations of each 

different level of each different factor is impossible. However, it may be easier to understand the 

component relationships of stressful factors within the underlying processes of birth and death. 

For example, theory and experimental work show that TPCs are compressed by limitations on 

food availability (Brett et al., 1969; Huey and Kingsolver, 2019; Vinton and Vasseur, 2022). 

Because food limitation has known impacts on metabolic and birth rates, the compression of the 

TPC can be understood as an amplification of the death function under permissive temperatures 

(through higher respiratory costs incurred by resource limitation) and/or a contraction of the birth 

function (through decreased biomass availability incurred by resource limitation). 

 

Life history: It is well established that many organisms have different thermal tolerances during 

different stages of their lives. For example, Kingsolver et al. (2011) found substantial differences 

in the TPC shape of sphinx moths during their egg, larval, and pupal stages. This increased 

vulnerability during certain life stages could be extremely important for forecasting; if juveniles 

are more thermally vulnerable than adults, but TPCs only reflect adult tolerance, there could be 

an unforeseen bottleneck where the population cannot replace itself due to unsuccessful 

maturation, despite reasonable survivorship among mature individuals. Some empirical data on 

these differences is already available in the life table datasets used in Chapter 1, as those 

parameters were frequently gathered for each of several stages in an age-structured population. 

To incorporate life history into the model, a possible method would thus be creating an rx for 

each age class x, where the birth function bx incorporated into each rx is the rate of new 

individuals joining that age class and the death function dx is the sum of the death rate of that 

cohort added to the rate of individuals leaving that cohort. If such specific data proves too 

difficult to locate or parse, an alternative method would be assuming some stable age distribution 

and basing each age class’s fitness TPC on empirical data. Then the change in population size 

would equal the proportional sum of changes to the population size of each age class. 

 

Thermoregulation: In variable thermal environments, most organisms are capable of 

physiological or behavioral thermoregulation. This thermoregulation essentially acts as a filter 

between the environmental temperature the organism exists in and the body temperature it 

experiences. Our current model set-up includes a paired set of equations (one to calculate 

temperature T and one to calculate changes in population size based on r(T)); to add 

thermoregulatory mediation to that model would require adding a third equation which 

transforms the environmental temperature T to the body temperature Tb based on 

thermoregulatory accuracy. Changes to population size would then be calculated using r(Tb). 

Some simple examples of this method could include (1) physiological thermoregulation of 
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endotherms, which transforms any environmental temperature within their thermoneutral zone to 

a constant body temperature (see Levesque and Marshall, 2021) or (2) behavioral 

thermoregulation of ectotherms, which could assume some percentage effectiveness of 

thermoregulation with higher efficacy under less extreme temperatures or in more variable 

environments (based on theory and data explored by Kearney et al., 2009). 

 

 
Chapter 4: Spatiotemporal Variation and the Eco-Evolutionary Dynamics of TPCs 

A final unexplored assumption in using TPCs for population forecasting is their ignorance of 

thermal variation. This assumption is particularly important because changes in thermal variation 

are likely to be even more important to impending population persistence than changes to the 

thermal mean (Dillon et al., 2016; Vasseur et al., 2014). The spatiotemporal scale of thermal data 

rarely matches the spatiotemporal scale of experienced thermal variation (Collins et al., 2018; 

Dillon et al., 2016; Sears et al., 2011) and how decoupled these scales are may critically impact 

the predictive power of TPCs. Some progress can be made on this problem by better 

understanding how behavioral thermoregulation alters both TPCs (see Chapter 3) and 

experienced temperature (see Sears et al., 2016), but more thought is needed on the broader 

theory of connecting an organism’s TPC with the environment in which that TPC evolved. 

 

Without the data to thoroughly resolve this issue, we can instead turn to emerging correlations 

between experienced temperature variation and evolved thermal tolerances (e.g., Magni et al., 

2018). For example, experimental work shows positive correlations between capacity for cold 

hardening and living in more predictable seasonal environments (compared to more random 

ones) in tropical lizards, implying that greater acclimation ability over the long term might 

increase hardening capacity over the short term (Phillips et al., 2016). Field studies have also 

shown higher quantities of HSP expression correlating with higher variation in thermal history 

based on the microsites of intertidal limpets across a wide range of latitudes (Lima et al., 2016; 

Moreira et al., 2021). Because the modeling framework developed throughout earlier chapters is 

built explicitly to incorporate various temperature regimes and dynamic thermal strategies, it is 

well-suited to examine the potential for evolutionary rescue given histories of thermal variation 

that provide different tools for future adaptation. This may illuminate gaps in our understanding 

of how spatiotemporal variation actually impacts the eco-evolutionary dynamics of TPCs and, 

critically, where the hard limits on the short-term acclimation and long-term evolvability of 

thermal tolerance might be (see Donoghue, 2008), with key implications for the prediction and 

management of global risks and species distributions in a warming world. 

 

Proposed Timeline: 

Ch 1 – preliminary research and modeling complete; finish and present initial modeling and 

results, Summer 2023 (ESA); write-up Fall 2023 (start of year 3) 

Ch 2 – preliminary research in progress; model and write-up Winter-Spring 2024 (end of year 3) 

Ch 3 – begin work Summer-Fall 2024, completed Fall-Winter 2024 (start of year 4) 

Ch 4 – begin work Winter-Spring 2025 (end of year 4), completed Fall 2025 (start of year 5) 
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FIGURES & TABLES 

 

VARIABLE MEANING 

α Density-dependence parameter (K = r/α) 

b Instantaneous birth rate 

CTmax Critical thermal maximum 

CTmin Critical thermal minimum 

d Instantaneous death rate 

dm Instantaneous death rate due to metabolic cost 

dp Instantaneous death rate due to proteostasis loss 

EA Activation energy of the Boltzmann-Arrhenius function 

K Carrying capacity 

k Boltzmann constant; ~8.61×10-5 eV/K 

k0 Intercept of the Boltzmann-Arrhenius function 

N Population size 

r Malthusian fitness 

t Time 

T Environmental temperature 

Tb Body temperature 

Tbreadth Range of temperature with positive fitness 

Tbreak Breakpoint between permissive and stressful temperatures 

Topt Thermal optimum; peak of fitness TPC 

Table 1: Compiled variables and their definitions. 

 

EQUATION NAME 

𝑑(𝑇) = 𝑘0 𝐸𝑥𝑝 (
𝐸𝐴
𝑘𝑇
) Boltzmann-Arrhenius function 

𝑟(𝑡) =

{
 
 

 
 𝐸𝑥𝑝 {−(

𝑇 − 𝑇opt
2σp

)

2

} , 𝑇 ≤ 𝑇opt

1 − (
𝑇 − 𝑇opt

𝑇opt − 𝐶𝑇max
)

2

, 𝑇 > 𝑇opt

 

Deutsch et al. (2008)’s 

phenomenological fitness function, 

where CTmin = Topt - 4σp 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐾
) Logistic growth equation 

𝑑𝑁

𝑑𝑡
= 𝑁(𝑟 − 𝛼𝑁) r-α model 

𝑟(𝑇) = 𝑏(𝑇) − 𝑑(𝑇) 
Temperature-dependent fitness 

function 

𝑑(𝑇) = 𝑑𝑚 + 𝑑𝑝 = 𝑘0𝑚  𝐸𝑥𝑝 [
𝐸𝐴𝑚
𝑘 𝑇

] + 𝑘0𝑝 𝐸𝑥𝑝 [
𝐸𝐴𝑝
𝑘 𝑇

] Unified death model 

Table 2: List of mentioned equations. 
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ABBREVIATION MEANING 

ATP Adenosine triphosphate; cellular energy units 

HSF1 Heat shock factor 1 

HSP Heat Shock Protein 

Hsp70 Heat shock protein 70 

HSR Heat Shock Response 

TPC Thermal Performance Curve 

Table 3: Compiled abbreviations and their definitions. 

 

 
 

 

 
 

Fig 1: In black, an example TPC of Malthusian fitness (r) with peak fitness at the thermal 

optimum (Topt), positive fitness within the thermal breadth (Tbreadth), and fitness ≤ 0 outside of the 

critical thermal minimum and maximum (CTmin and CTmax, respectively). TPCs can be obtained 

phenomenologically by fitting the black curve to experimentally gathered data or theoretically by 

subtracting the exponential death rate (d) in red from the unimodal birth rate (b) in blue; the 

latter method is used here. 
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Fig 2: Example data and resulting TPCs from the insect Diaphorina citri from Liu and Tsai 

(2000) (left) – a typical dataset from the 38-species compilation used by Deutsch et al. (2008), 

Vasseur et al. (2014), and Duffy et al. (2022) – and the phytoplankton Phaedactylum tricornutum 

from Baker and Geider (2021) (right). The birth and death rates for the former (D. citri) were 

calculated from a reported life table (see Birch, 1948) and illustrate (1) the small size of many 

used datasets, including only one data point measured beyond Topt, and (2) the potential of 

phenomenological fits to overestimate fitness under stressful temperatures. The death rate and 

fitness values for the latter (P. tricornutum) were directly reported (instantaneous birth rate from 

straightforward calculation) and illustrate a much closer match between phenomenological and 

mechanistic TPCs. 

 

Top: Birth rates (blue dots) were fitted with a normal distribution (blue lines) while death rates 

(red dots) were fitted first, with a single Boltzmann-Arrhenius function for death rate resulting 

only from metabolic cost (EA = 0.4) (dashed red line) and second, with the sum of two 

Boltzmann-Arrhenius functions for death rate resulting from both metabolic cost (EA = 0.4) and 

proteostasis loss (EA = 6) (solid red line). 

 

Bottom: Fitness TPCs were calculated from the measured fitness data (dots) using the 

phenomenological method of Deutsch et al. (2008) (gray line) and the mechanistic method of 

subtracting death rate from birth rate (black lines; dotted show result using only metabolic death 

rates, while solid lines show result using the sum of metabolic cost and proteostasis loss).  
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