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How I Wrote My Prospectus 
The general shape of my prospectus was formed via conversations with my advisor. By the summer 
after my first year I had a general sketch of what I wanted to work on during my PhD. I then started 
data collection in earnest. This was for both my preliminary data for the prospectus and a 
publication. Going through the publication process really helped me refine my ideas, write a strong 
introduction and  finalize preliminary data. Feedback from reviewers also helped direct my other 
aim. When the paper was submitted I went directly into adapting it into my prospectus. This 
required some significant additions but felt very accomplishable. My advisor read a mostly 
complete draft of my prospectus and provided feedback and also gave feedback on my oral 
presentation twice. This helped me streamline my ideas quite a bit. The full process of creating my 
prospectus took about 8 months including data collection and writing the publication. I probably 
spent 2-3 weeks on writing just the prospectus itself and then more time on the presentation and 
studying for the qualification exam. 

Advice for Prospectus Writers 
The biggest piece of advice I can give is to try not to stress about your prospectus. If you are in good 
communication with your advisor and they are happy with where your project is at you will be fine. I 
also recommend getting people who are not just your advisor, committee, or lab to read your drafts 
and provide feedback. The reviewers of our paper were so helpful in helping me think through 
potential pitfalls and friends reading the prospectus helped me make it much more intelligible. The 
graduate writing lab is a great resource to have a pair of trained eyes look it over! 
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Specific Aims 
Cellular metabolism is a complex network of enzymes and chemical reactions, finely tuned to meet the 
cell’s energy needs. Recent research suggests that the cell regulates its metabolism not only through 
control of the activity of the enzymes involved, but also through exquisite spatial control of the 
components of metabolism in both membrane bound and membraneless organelles, the latter of which is 
formed via liquid-liquid phase separation (LLPS). Understanding how and why this spatial organization 
occurs is critical to understanding how metabolism adapts to stress and disease. Optical photothermal 
infrared microcopy (OPTIR) is a promising tool for investigating how proteins and metabolites organize 
themselves without need for bulky fluorescent labels and can also provide structural information on the 
proteins in the LLPS condensates. In this work, OPTIR will be applied to two disparate yet interconnected 
metabolic pathways, de novo lipogenesis (DNL) and glycolysis, to provide insight on how metabolism 
rearranges in stress and disease. 
Aim 1 Characterize rates of DNL across cell lines and changes in DNL rates and localization in 
response to stress and drugs 
Goal: Develop straightforward process for tracking rates of DNL in living cells and demonstrate 
usefulness in various disease models. 

1.1) Optimize DNL rate measurements for Huh-7 cells.   
1.2) Design a flow cell for real-time observation of drugs and stress on living cells.  
1.3) Map basal DNL levels across cancer cells and create a library of DNL rates. 
1.4) Measure the effects of drugs and stress on DNL towards the goal of understanding how drugs 

and stress conditions affect the disease state of DNL related conditions like non-alcoholic fatty 
liver disease (NAFLD) and metabolic syndrome. 

Aim 2 Discern the changes in structure of phosphofructokinase (PFK) upon binding of allosteric 
effectors in vitro and in cellulo 
Hypothesis: Binding of allosteric effectors will have widespread effects on PFK, causing filamentation in 
vitro and condensation in cells. Activators and inhibitors will produce different in vitro structures.  

2.1) Express and purify high quality PFK using E. coli expression systems and nickel affinity 
purification. 

2.2) Evaluate PFK isoform structures in solution and following filamentation/phase separation 
using circular dichroism, FTIR, OPTIR, and fluorescence spectroscopies.   

2.3) Test conditions, including the addition of allosteric effectors and stressors like nutrient 
deprivation and anoxia, on cells to determine which conditions generate robust condensation. 
The morphology of the phase separation will be characterized using fluorescence microscopy.  

Aim 3 Connect in vitro structures to in cellulo condensates  
Hypothesis: Changes in the cellular environment affect the structure of PFK and different stressors and 
effectors produce different PFK structures even when condensate morphology is similar 

3.1) Transfect cells with fluorescently labelled PFK and map basal and puncta forming conditions 
(i.e. allosteric effectors) with OPTIR to determine if overexpressed PFK can be visualized via 
IR imaging 

3.2) Move to tag-free PFK to view the structures of puncta in OPTIR without the interference of 
bulky fluorescent tags. If PFK is difficult to locate without any label, small IR tags like azide 
modified amino acids can be used. 

3.3) Study native stress conditions by employing THP-1 immune cells, which express PFK and 
have both inflammatory and anti-inflammatory states thought to affect PFK localization and 
structure through upregulation of allosteric effectors like citrate 
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Background and Significance 
Modern cell biology and biochemistry has demonstrated the cell is not a ‘well mixed’ 

environment.1 Instead, both membrane-bound organelles and membraneless assemblies serve to organize 
the cell and promote necessary chemistry in a dynamic and responsive fashion. Membraneless assemblies 
are driven primarily through liquid-liquid phase-separation (LLPS), in which many transient interactions 
cause the concentration of a solute into a separate phase.2 Recently, the importance of membraneless 
metabolic assemblies in regulating processes like glycolysis has become apparent.3 Glycolytic or G 
bodies, phase-separated condensates rich in glycolytic enzymes, substrates, and effectors, have been 
shown to be a key cellular response to stress. Glycolysis is not only a critical metabolic pathway for energy 
generation, it is also the first step in a variety of other metabolic processes including de novo lipogenesis 
(DNL). Further, glycolysis and DNL are classically upregulated in cancer (the Warburg effect) as the cell 
transitions away from aerobic metabolism. 

In order to best understand cellular metabolism and how it changes in the disease state, metabolic 
networks must be studied with spatial and temporal resolution. This however, is not trivial, as traditional 
fluorescent labels can be difficult to incorporate and often alter the metabolic processes involved. 
Carbohydrates and lipids are much more difficult to label than proteins and fluorescently labelled analogs 
are often nonmetabolizable. Labeling with 13C, however, has been shown to be nontoxic and 
nonperturbative to cells and is anabolized similarly to 12C for molecules like glucose.4 Isotopic labeling 
has been used to great success for diverse metabolic studies, including mass-spectrometry, but these 
methods lack spatial resolution within the cell.4,5 

Vibrational microspectroscopy is a promising tool for studying metabolism in cells and organisms 
as it is a label-free and non-perturbative.6–9 It can provide spatially and temporally resolved information 
on the identity of biomolecules in the cell as well as information on the secondary structure of protein 
molecules.10 Additionally, when small vibrationally active probes such as azide, deuterium, or 13C labels 
are used, vibrational microspectroscopy can inform on site-specific local environment and rates of 
metabolism across the cell.11 For example, Li and Cheng used deuterium labeled glucose for tracking DNL 
in live cancer cells using stimulated Raman microspectroscopy (SRS).12 However, their method could not 

also provide information on lipid identity and other surrounding 
biomolecules as it was single wavenumber based.  

The two primary forms of vibrational spectroscopy used 
for cellular studies are FTIR and Raman spectroscopy. 
Unfortunately, both methods have significant drawbacks 
affecting in cell work. FTIR suffers from poor spatial resolution 
when used with microscopy.13 This is because the diffraction 
limit of infrared light is orders of magnitude larger than that of 
visible light. Depending on the wavelength in question, FTIR has 
a spatial resolution ranging from ~3 µM to greater than 20 µM. 
This obscures all but the largest of cellular organelles and 
substructures. Additionally, FTIR cannot easily be performed in 
aqueous media, as water is a strong infrared absorber.14,15 This 
means that work is usually done on cells that have been fixed and 
dried,7,11,16 possibly disrupting the cellular environment as water 
is removed,17 introducing artifacts such as Mie scattering,18 and 
not allowing for real time, live cell tracking of cellular processes. 
Raman spectroscopy, on the other hand, has significantly less 
interference from water and can be performed on live 

cells.12,16,17,19–21 The Raman cross-section, however, is small and signal intensity and signal to noise are 
consistent issues.22 This leads to high laser powers and long collection times, which can damage cells.  

 
Figure 1. De novo lipogenesis 
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 Optical photothermal infrared spectroscopy (OPTIR) 
was developed to address some of these issues.20,23–25 It 
utilizes a pump-probe set-up in which a mid-IR laser 
‘pump’ excites a spectral area, causing a photothermal 
response and expansion of the sample. A visible laser 
‘probe’ detects changes in the refractive index of the 
sample caused by heating and transforms it into a mid-IR 
spectrum comparable to FTIR (Fig. 2).26 The spectrometer 
is paired with a confocal or traditional light microscope, 
providing spatiotemporal control, and the technique is non-
destructive and label-free. Since the diffraction limit of 
visible light is one to two orders of magnitude smaller than 
IR light this technique is ‘super-resolution’ IR-
spectroscopy, providing IR spectra with a resolution of up 
to ~300 nm, equivalent to light microscopy.27 This makes 
it incredibly well-suited for mapping structures within cells 
in situ. OPTIR can be used to both track cellular 

components through specific vibrational modes (i.e. lipid carbonyl stretching at 1747 cm-1) and 
simultaneously report on protein secondary structure through deconvolution of the amide-I band (~1620-
1670 cm-1, with specific peaks correlating with secondary structural elements).10,20 The technique has 
already been used to characterize both living and fixed cells20, including identifying and analyzing the 
structure of aggregated amyloid protein in neurons.28 

We aim to use OPTIR and vibrational probes as well as complementary techniques to elucidate 
nuances of cellular metabolism with high spatial, temporal, and spectral resolution. This project will 
examine glycolysis via 
the phase-separating 
and filament-forming 
properties of 
phosphofructokinase, 
liver isoform (PFKL) 
and DNL via tracking 
of the flow of carbons 
through the DNL 
pathway and its 
response to stress and 
disease conditions. 
This will provide 
important insight on 
how the cell organizes 
metabolism in health 
and disease and the 
methods developed will 
be applicable to 
studying a great variety 
of cellular processes. 
Preliminary Work 

OPTIR has 
strong potential as a 
tool for resolving 

 
Figure 3. Peak assignments for 12C and 13C glucose fed 3T3-L1 adipocytes. (a) 
Representative OPTIR spectrum from a fixed, differentiated 3T3-L1 adipocyte with 
all peaks assigned. (b) Reprint of spectrum from (a) (black) overlaid with 
representative spectrum of differentiated 3T3-L1 adipocyte after 72 hour incubation 
with 13C glucose. Peak shifts are indicated with arrows.   
 

 
Figure 2. OPTIR Block Diagram. Adapted 
from ref. 25. 
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metabolism in the cell, but it has never been used significantly beyond proof of concept for in cellulo 
studies as it was designed for materials chemistry. My preliminary worked has focused on optimizing 
OPTIR for biological samples and designing protocols for incorporation of small IR tags for in cell work. 
The preliminary data presented in this proposal develops a protocol of using OPTIR to assess rates of 
DNL in living and fixed cells utilizing cellular anabolism of 13C labeled glucose. Figures and text have 
been reproduced in part from Shuster, SO; Burke, MJ; Davis, CM, Spatiotemporal Heterogeneity of 
De Novo Lipogenesis in Fixed and Living Single-Cells which is currently under revision. 

In this work, we use OPTIR to investigate the rate of DNL in differentiated 3T3-L1 adipocytes. In 
DNL, glucose or other carbohydrates are metabolized to form free fatty acids (FFA) and triglycerides (Fig. 
1).29 The pathway begins with glycolysis. Pyruvate is then taken into the mitochondria and converted to 
citrate via the TCA cycle. Citrate is converted to acyl-CoA and malonyl-CoA which feed the fatty acid 
synthesis pathway and result in triglycerides. Triglycerides are then stored in lipid droplets as an energy 
reserve. By feeding cells 13C labeled glucose in place of 12C glucose, the 13C progresses through the DNL 
pathway and labels the resulting lipids.11 

13C is a nonperturbative vibrational probe of de novo lipogenesis. To assess the power of 
OPTIR in resolving cellular components, the spatial and spectral resolution was evaluated using fixed 
3T3-L1 cells. The cells were grown to confluency and differentiated using standard practices.30 The 
resulting lipid droplet rich adipocyte cells were fixed. To limit background from water, a strong IR-
absorber that overlaps significantly with the protein amide-I vibrational mode, fixed cells were air dried 
prior to OPTIR imaging experiments.  

The spectral resolution was evaluated in a representative spectra collected in a lipid deposit of a 
fixed adipocyte cell (Fig. 3a).  All peaks in the adipocyte OPTIR spectra could be assigned. All bands, 
except the peaks at 1655 cm-1 and 1541 cm-1, the amide-I and amide-II bands, respectively10, were 

assigned to lipid vibrational 
modes.19,31–33 Notably, the 
position of the ester carbonyl 
vibrational mode at 1747 cm-1 
indicates that the bulk of the 
lipids present are triglycerides, 
as expected for adipocytes.  

To track glucose 
metabolism and DNL, 13C 
glucose was fed to cells in 
place of 12C glucose. Because 
the frequency of the 
vibrational modes of 
molecules has an inverse 
relationship with the reduced 
mass of the atoms involved, 
substituting heavier isotopes 
cause red-shifts in the 
frequency of the modes.34,35 
Glucose is the primary carbon 
source for generation of FFA 
and triglycerides in adipocytes 
like 3T3-L1.36 Incorporation 
of the 13C into lipid molecules 
results in significant shifts 
across the lipid spectra (Fig. 

 
Figure 4. Changes in lipid composition over time showcase rates of DNL. 
Images generated from the vector normalized and average intensity of 12C 
lipid (1737-1757 cm-1) (orange), protein (1625-1700 cm-1) (blue) and ratio 
images created from the amide-I corrected ratio of 13C/12C lipids (far right) at 
(a) 24, (b) 48, and (c) 72 hours after feeding cells with 13C glucose. A 
threshold was applied so that only areas with a lipid signal above 0.025 were 
used for calculating the lipid ratios. Experiments were repeated three times 
with similar results. 
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3b).11,37 The most obvious is the ~44 cm-1 red shift of the 13C ester carbonyl stretch as compared to the 
12C ester carbonyl stretch. As the single strongest lipid vibrational mode, the ester carbonyl stretch is an 
excellent probe of lipids within the cell. By calculating the ratio of the ester 13C=O band to the ester 12C=O 
over time, the rate of DNL can be tracked.11 

OPTIR provides high resolution hyperspectral imaging. The spatial resolution of OPTIR is 
determined by the diffraction limit of the 532 nm probe laser. Line scans using 500 nm spacing confirmed 
the manufacturer specifications; OPTIR has a spatial resolution of 500 nm.24 Hyperspectral maps are 
three-dimensional images assembled from complete OPTIR spectra, 801-1799 cm-1, collected at every 
point. All hyperspectral maps were collected using 500 nm spacing.  

Noticeably, as compared to the appearance of living adipocytes, fixed, dried cells experienced 
some pooling and combining of the lipid droplets into deposits. This has been previously reported and 
does not affect the lipid spectra, but does affect lipid distribution and overlap with protein signal.32 We 
chose not to use a post-fixative agent on the lipids as we did not wish to introduce additional vibrationally 
active chemicals or cause changes to lipid molecular structure. Nevertheless, disruption of lipid droplet 
morphology is a significant drawback of fixed, dried cells and highlights the importance of live cell data 

collection for properly imaging lipid localization. 
Spatiotemporal resolution of DNL in fixed cells. To 

track DNL, hyperspectral maps of dried, fixed cells at 24, 48, and 
72 hour time points after the addition of 13C glucose were 
collected (Fig. 4). All cells had a similar appearance with 
collections of lipid droplets and deposits that could be visualized 
by the intensity of the 12C carbonyl ester band, and protein signal 
throughout the rest of the cell, visualized via the intensity of the 
amide-I band.  

Ratio images of the ester 13C=O band to the ester 12C=O 
map DNL were constructed to quantify DNL in each cell (Fig. 4 
13C incorporation). The images were assessed in two ways, as a 
single-cell average of the lipid rich areas or with full spatial 
resolution over the lipid rich areas. We chose only to analyze the 
regions with significant lipid signal to reduce noise in lipid free 
areas that may be amplified by creating ratio images. We found 
that the average single-cell 13C/12C ratio continually increased 
over the period of time tested (72 hours) with a final ratio of 0.54 
± 0.14. The data broadly agrees with two past studies that tracked 
DNL via heavy isotope incorporation into triglycerides.  Shi et al. 
used QCL-based FTIR imaging to obtain ratios of 13C lipid ester 
carbonyl/ 12C lipid ester carbonyl in 3T3-L1 MBX cells at 72 h 
with low spatial resolution. They did not report any average data, 
however, the 13C lipid ester carbonyl/ 12C lipid ester carbonyl ratio 
range reported in their cell images (ratios between 0.1 – 0.7) 
agrees with the ranges we see. Our measurements are also in line 
with DNL rates reported for PANC1 pancreatic cancer cells; Li 
and Cheng reported end points of DNL at 72 h (a ratio of ~0.6) 
via a ratio of the lipid C-D/ lipid C-H as measured by single 
frequency SRS imaging.4,17 Normal immortalized epithelial cells 
and prostate cancer cell lines, LNCaP and PC3, had significantly 
lower ratio end points.4  To meet increased energy needs, cancer 
cells rely on metabolic rewiring such as upregulation of DNL.1 It 
is intriguing that a similar rate of DNL is observed in 3T3-L1 

 
Figure 5. Visualization of rates of 
DNL in live adipocytes. Live 
differentiated 3T3-L1 adipocytes 72 
hours after feeding with 13C glucose. 
(a) Brightfield image. (b) Single 
wavenumber image collected at 
1747 cm-1 corresponding with 12C 
lipid ester carbonyl band. (c) Ratio 
image showing 13C lipid ester 
carbonyl (1703 cm-1)/ 12C lipid ester 
carbonyl (1747 cm-1) after correction 
for amide-I and water bending band 
highlighting varying rates of DNL 
across the cell. Data collected in 
PBS. 
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adipocyte and PANC1 pancreatic cancer cells, as it suggests that DNL is so upregulated in this particular 
cancer cell line that it is in line with adipocytes.  

In line with the single-cell average data, as time progressed the ratio of 13C=O/12C=O labeled lipids 
within the cell increased in the ratio image (Fig. 4 13C incorporation). Highlighting the importance of 
considering spatial data, there was some variation in the ratio across lipid-rich regions of individual cells. 
In particular, the edges of lipid droplets and deposits have a lower ratio of 13C labeling, especially at later 
time points (Fig. 4c), suggesting the presence of older lipids or slower DNL in these locations. However, 
it is difficult to draw strong conclusions about the spatial heterogeneity of DNL from ratio images as the 
shape and structure of lipid droplets is not well-preserved during fixing and drying. 

Live cell imaging highlights spatiotemporal DNL heterogeneity. Although fixed, dried cells 
are advantageous because they enable the long imaging times necessary for collection of highly detailed 
hyperspectral maps, they also come with several drawbacks. Dried cells can be damaged by IR and visible 
lasers and drying may introduce artifacts.18 More importantly, the fixing and drying process causes 
disruptions in the lipid droplets and possibly in protein structure and localization.16,32 Loss of water can 
disturb organelles and change the shape and thickness of the cell, compromising the quality of spatial 
data.16 Therefore, comparing against live cell data is critical to confirm observations made in fixed cells 
as well as tracking processes of interest in real time. Unfortunately, collecting data from hydrated samples 
has been nearly impossible using conventional FTIR microscopes as water is a strong IR absorber.15 
OPTIR, however, has significantly less contribution from bulk water.20 This allows for data collection 
within live cells.20 

Adipocytes at 72 hours after 13C glucose feeding were mounted on slides in PBS with a 5 μm 
spacer to preserve hydration and minimize cell compression. In the current configuration, hyperspectral 
maps could not be collected because of the long imaging times, however single point full OPTIR spectra 
could be collected and frequencies of interest determined . Single wavenumber images of single cells were 
collected at 1747 cm-1 (ester 12C=O) , 1703 cm-1 (ester 13C=O), and 1655 cm-1 (water and amide-I bands). 

Brightfield images of the live adipocyte cells show distinct lipid droplets and morphology in 
agreement with literature (Fig. 5a).30 The 1747 cm -1 images clearly show strong lipid signals in the 
droplets with no lipid signal in the rest of the cell (Fig. 5b). The ratio images show varied rates of DNL, 
especially between cells (Fig. 5c). There is, however, some variation between lipid droplets within cells 
and even across lipid droplets. This hints at the complexity of glucose anabolism into lipids and lipolysis 
and demonstrate that this technique can detect even small differences in the ratio of 13C triglycerides to 
12C triglycerides in living cells. Other than the shape of the lipid droplets, the data is in good agreement 
with the fixed cell ratios at 72 h with the 13C/12C lipid ester carbonyl ratio varying from ~0.4 to ~1 in both 
cases. 

Single spectra were collected to compare with fixed cells. Full spectra show good agreement with 
fixed cell data and similar ratios between the 
13C and 12C ester carbonyls at the 72 h time 
point (Fig. 6). The lipid droplets were better 
defined in spectral images of live cells than 
in fixed cells and had less overlap with 
protein amide-I signal, as seen by full 
spectra  (Fig. 6). While the vibrational mode 
of water at ~1645 cm-1 could obscure the 
amide-I mode, the absence of proteins in the 
lipid droplets is confirmed by the absence of 
the amide-II band (Fig. 6).10,15 This data 
implies that fixed cells provide reliable data 
on the range of rates of DNL seen across the 
cell. Unfortunately, the collapse of the lipid 

 
Figure 6. Full OPTIR spectra collected in hydrated, living 
adipocytes. Live differentiated 3T3-L1 adipocytes 72 hours 
after feeding with 13C glucose. Brightfield (left) with points 
spectra were collected from indicated. Colors match 
corresponding full OPTIR spectra (right). Black, purple, and 
red spectra, which represent lipid rich regions, are offset. 
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droplets in fixed cells causes protein and lipid signals to overlap, which does not occur to a significant 
extent in the live cells. This may obscure signal from the lipids and also means that it is impossible to 
comment on lipid localization in the fixed cells. Therefore, for questions in which high resolution spatial 
information is needed, live cells should be used. Fixed cells, however, are suitable for hyperspectral 
imaging, which can provide information on lipid species occurring at lower concentrations, like FFA, and 
allow complete analysis of lipid and protein spectral features at each location. This work demonstrates 
that OPTIR is suitable for live and fixed cell analysis and that IR probes can be simply incorporated and 
then identified by OPTIR. It thus lays the groundwork for my proposed research. 

Proposed Research 
Aim 1. Characterize rates of DNL across cell lines and changes in response to stress and drugs 
Dysfunction in DNL has been linked to a variety of 
diseases, including obesity, cancer, and several viral 
infections.29 Most notably, hepatic DNL elevation is 
a hallmark of non-alcoholic fatty liver disease 
(NAFLD), a disease with a lifetime prevalence above 
25%!38 Understanding basal rates of DNL across cell 
lines and how it changes in response to stressors and 
drugs is critical for a better understanding of the 
disease and testing the effects of drugs that target 
DNL or tracking DNL in an individual to predict 
disease onset and severity. My preliminary work has 
shown that OPTIR is an excellent technique for 
tracking DNL in both living and fixed cells. In 
adipocytes there were significant variations in the 
incorporation of 13C into the triglycerides  between 
cells. The large standard deviation in the average 
ratios highlights cell to cell difference in average rates 
of DNL (Fig. 7a). DNL is also spatially heterogenous; 
at 72 h, histograms of the 13C/12C ratios measured in 
lipid rich regions of single cells vary from 0 to above 
1, indicating that the local 13C enrichment ranges from 
0 to well above 50% (Fig. 7b-d). This intra and 
intercellular variation will be characterized in additional cell lines. 
1.1 Optimize DNL rate measurements for Huh-7 cells.  First, I will culture Huh-7 liver cells and replace 
the 12C glucose with 13C labeled glucose for 1-4 days. Cells will be imaged fixed and live as previously 
described for 3T3-L1 cells. I will ensure that the much smaller lipid droplets are able to be observed in 
the hepatic cells and that 13C glucose uptake and processing happens on a reasonable time scale (hours to 
days). DNL rates will be calculated for the cells under normal conditions.  
1.2 Design flow cell for real-time observation of drugs and stress on living cells. One of the benefits of 
OPTIR is its ability to collect high-resolution data inside of living cells. This allows for observation of 
how metabolic processes change in real-time. The addition of a flow cell would allow for the introduction 
of drugs, stressors, and other stimuli during observation of the Huh-7 cells to track the reaction of the 
DNL pathway on a sub-minute timescale. We have prototyped several flow cells, but I will work to 
improve the set up to allow for heating (to keep cells at 37 ºC or apply heat stress) and easy removal of 
both windows for cleaning of the calcium fluoride, an expensive but necessary substrate that must be 
carefully decontaminated and cleaned to remove biohazards and remain transparent in the infrared region. 
Additionally, as 13C incorporation into lipids does not become obvious to the naked eye in the spectra for 

 
Figure 7. Increasing ratio of 13C labeled lipid over 
time. (a) Average ratio of 13C:12C lipid as calculated 
by eq. 1 of lipid rich regions of cell (n = 3 cells 
where error bars shown, * =  only one cell 
measured for these time points). Between 1000 
and 6000 spectra made up the lipid rich regions of 
each cell. (b-d) Histograms of 13C:12C lipid ratios 
for three cells at 72 hours after addition on 13C 
glucose, demonstrating inter and intra-cellular 
spread. 
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several hours, analysis software based in Python or MATLAB may need to be developed to detect earlier 
changes. Once the flow cell is constructed it will be tested by switching Huh-7 cells into isotopically 
labelled glucose media using it and measuring DNL in real time. 
1.3 Map basal DNL levels across cancer cells. DNL rates will be mapped across cancer cell lines in which 
glycolysis and DNL are suspected or known to be upregulated.29 This includes breast cancer cell lines 
MCF-7 and T47D39, prostate cancer cell lines PC-3 and LNCaP12,32,40, lung cancer cell lines A549 and 
H46041, and colorectal cancer cell lines HT29 and SW48042. Currently, there is little to no data on 
differences in spatial organization of DNL across cell lines. I will work to build a library of this 
information. DNL rate will be recorded as the ratio between 13C and 12C labelled lipids with both average 
data across the cell (Fig. 7a), images (Fig. 4), and histograms of the ratio at all lipid rich points (Fig. 7b-
d) to capture heterogeneity between and across cells.  
1.4 Measure the effects of drugs and stress on DNL. Drugs known to be direct inhibitors of enzymes 
involved in glycolysis and fatty acid synthesis such as benzenetricarboxylate43 will be applied to the 
tissues to see how they affect DNL rate and cell survival across cell lines with a particular eye towards 
those with the highest rates of DNL. Additionally, various stress and disease like conditions will be tested. 
This will lay the foundation for a pipeline of testing DNL directed anti-cancer treatments. 
Aim 2. Discern the changes in structure of phosphofructokinase (PFK) upon binding of allosteric 
effectors in vitro and in cellulo 
DNL begins with glycolysis and the spatial organization of metabolic enzymes crucial to glycolysis is an 
area of great research interest. Reorganization of metabolic enzymes appears to be a critical stress response 
in the cell.2,44,45  Phosphofructokinase (PFK) is a glycolytic enzyme that performs the committing step of 
glycolysis. In humans, there are three PFK isoforms, liver (PFKL), muscle (PFKM), and platelet (PFKP), 
that occur in varying ratios depending on the tissue type. PFKL has been shown to both enter G bodies 
and form separate phase separated structures in cells46 and C. elegans47 during nutrient stress, 
overexpression, and addition of activators and inhibitors. How this mechanism is triggered and regulated 
is not well understood. It may serve a storage depot for inactivated enzyme or a concentrated pool of 
glycolytic activity or both, as this condensation forms in response to both inhibition and activation. 
Additionally, the ability of PFKL to form higher-order oligomers in vitro has been known for many years 
(Fig. 8).45 Recently, it was demonstrated 
that in high substrate conditions in vitro, 
PFKL forms filaments composed of 
stacked tetramers.46 In order to 
understand the connection between in 
cell puncta and filamentation, if there is 
one, conditions that induce both must be 
fully understood and structures mapped. 
2.1 Express and purify high quality 
PFK. First, the three isoforms of PFK 
will be expressed in E. coli deficient in 
their own PFK homolog, strain RL257.48 Ideally, pDream vectors will be used so the same construct can 
also be transfected in mammalian systems, but as human PFK has proven difficult to express in E. coli, 
bacteria optimized sequences encoded on pet28b vectors may be necessary.49 A C-terminal 6x histidine 
tag preceded by a thrombin cleavage sequence will be included to aid in purification. Nickel-affinity 
chromatography will be used for purification, followed by cleavage of the histidine tag. PFK purification 
will be validated by SDS-PAGE, liquid chromatography mass spectrometry, circular dichroism 
temperature melts, and activity assays. 

   
Figure 8. (a) Crystal Structure of PFKL tetramer PDB: 4WL0 (b) 
Transmission electron microscopy image and (c) model of PFKL 
filaments after saturation with fructose-6-phosphate. Adapted from 
ref. 46. 
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2.2 Evaluate PFK isoform structures in solution and following filamentation. The proteins will be 
evaluated in solution by OPTIR, FTIR (for instrument validation), and circular dichroism (CD) to obtain 
a structural baseline. The amide-I will be analyzed via multipeak fitting and second derivative analysis to 
assess various secondary structure components’ contribution. PFKL will then be induced to form filaments 
by the addition of high concentrations of its substrate, fructose-6-phosphate, and structural information 
collected on these via OPTIR and FTIR (solids are not suitable for CD). Although it has not been reported 
in the literature, we will attempt to induce filamentation of the other isoforms as well. Additionally, varied 
salt, polyethylene glycol (cellular crowding mimic), temperature, and the known allosteric effectors of 
PFK will be used to observe if LLPS can be induced in vitro.2 We predict that in the right conditions all 
isoforms will filament and phase-separate. If PFKM or PFKP can form filaments or if any of the isoforms 
can form LLPS, they will be structurally characterized using OPTIR to examine the secondary structure 
make-up. The structural information collected will serve as a library for comparison of the in-cell data. 
Any filaments formed will also be characterized by electron microscopy. We expect that filaments formed 
in different conditions (i.e. allosteric inhibition vs. activation) will have different structures with distinct 
OPTIR spectra. This may explain why and how LLPS forms in response to very different cellular stimuli. 
2.3 Test conditions on cells to induce LLPS. I will 
test the various allosteric effectors and stress 
conditions on Huh-7 human liver cells transfected 
with fluorescently tagged PFK isoforms and 
assess for puncta formation. Allosteric effectors 
include citrate, ATP, AMP, ADP and stress 
conditions include general nutrient stress, glucose 
deficiency, and hypoxia. Conditions that form 
robust puncta in short time frames will be used in 
Aim 3. PFKL is expected to form puncta in most 
conditions. PFKM and PFKP are not expected to 
form puncta in any conditions, although any 
conditions that cause in vitro phase separation or 
filamentation may also induce in cellulo LLPS. 
Aim 3. Aim 3 Connect in vitro structures to in 
cellulo condensates  
In order to understand if this higher order oligomerization is occurring in cells and identify the structures 
therein, a spatially and temporally resolved technique that can provide structural information resolvable 
from the cellular background is needed. Further, the structural information gained in even normal 
conditions can help to improve and validate in vitro structures, as the cellular milieu can have significant 
effects on protein structure.50 OPTIR can bridge the gap between in vitro structures and the cell. We 
hypothesize that structures characterized in cells of PFK will be similar, but not identical to in vitro 
structures, and that visually identical condensates formed in the presence of different allosteric activators 
or inhibitors will have distinguishable structures. 
3.1 Map basal and high puncta forming conditions with OPTIR. Fluorescently labeled PFKL will be 
transfected into Huh-7 liver cells. Cells will be mapped with OPTIR to see if overexpression is apparent 
in cellular amide-I signal and to obtain  a basal background in normal and overexpressed conditions. PFK 
structural information will be obtained by subtracting spectra from untransfected control cells and then 
analyzing the amide-I bands. The cells will then be subjected to a stress or allosteric effector found to 
form robust puncta during Aim 2. These labeled puncta will be mapped with OPTIR to identify structures 
(Fig. 9). It is likely that the structure of the fluorescent tags (β-barrel of fluorescent protein) will obscure 
PFKL structure, but visualizing this alone will be excellent proof of concept. 

 
Figure 9. Schematic for collection of structural 
information in cells during cellular stress. Scale bar is 15 
μm. Data collected by Vincent Chang. 
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3.2 Move to tag-free or almost tag-
free conditions. First fluorescently 
tagged protein will be used to 
simplify puncta identification, but 
the puncta should be identifiable via 
amide-I shifts in the IR imaging, so 
tag-free imaging will be the goal.  
OPTIR will be used to gain 
structural information from inside 
the puncta. This will be compared to 
the in vitro results. We predict that 
there will be significant structural 
similarity between the in vitro 
filaments and the in cellulo puncta. 
PFKL will also be exposed to each 
allosteric effector and various forms 
of cellular stress to see if this 
impacts structure inside the puncta. 

Although others have 
successfully assigned structural 
elements of the amide-I in OPTIR spectra to overexpressed proteins28, resolving phase-separated 
structures or locating PFK without labels may be difficult. In this case, PFK will be expressed in the cells 
with an azide probe (Fig. 10).51 Amber codon technology can replace one or more residues with an azido 
group containing analog and allow direct expression of an azide tagged protein.52 Data suggests this will 
not impact enzyme activity.53 Triple bonds are uncommon in nature and have a unique vibrational mode 
far-removed from all cellular signals (Fig. 10a,c).51 By imaging a cell at the azide vibrational mode, the 
location of the tagged protein can be easily identified and the amide-I can be examined for structural 
information. Further, the absorbance of the probe is sensitive to the local environment, providing site-
specific information. If locating PFK still proved difficult, the azide probes could be uniformly 
incorporated for greater concentration and therefore signal. 
3.3 More native stress conditions. Assuming data is successfully collected inside of Huh-7 cells, PFKL 
will be transfected in THP-1 cells that have been differentiated into both the inflammatory and anti-
inflammatory subtypes.54 The inflammatory subtype has elevated citrate and increased cellular stressors, 
allowing for a more biologically relevant test of the effects of allosteric effectors and cellular stress on 
PFKL. OPTIR will be used to assess PFKL secondary structure in the two cell subtypes. This is 
particularly biologically relevant as PFKL is the dominant isoform in immune cells like THP-1.55 
Conclusions 
This work aims to understand how the cell organizes its complex metabolism and in particular how that 
organization adapts to stress and disease. Recent work has demonstrated that phase separation and 
filamentation of enzymes and other biomolecules is conserved mechanism used across the cell in multiple 
metabolic processes.2,44,45 OPTIR is a promising technique in this domain as it is compatible with living 
systems and can resolve molecular identity and protein structure with high resolution in space and time. 
This proposal focuses on DNL and a small part of glycolysis, but the technique can be used for almost 
any biological or metabolic process and this can help lay the foundation for label free imaging with high 
resolution in space and time and a better understanding of how the cell meets its energy needs in a changing 
environment. 
  

 
Figure 10. Azide probes in the cell-silent window. (a) Full IR spectra 
of a cell, showing region with no naturally occurring vibrational 
modes, (b) chemical structures of two azide modified amino acid 
probes, and (c) the IR absorbance of an azide group in the cell-silent 
region. Adapted from ref. 11. 
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